Post 168  ⇒  by Gautam Shah  →

The constituents of a composite are ordinarily classified as Matrix and Filler. It is the nature of relationship between the filler and matrix, or the Interface that defines the composite. Fillers serve to resist stresses, mainly tension, and the Matrix serves to resist the shear, and all materials present including any aggregates, serve to resist the compression.


Matrix and Filler each are of three types: Metals, Ceramics and Polymers.

These three provide nine possible combinations.

Composite materials’ combinations: Possibilities of combinations and type-examples.

Matrix (m) + Filler(f) = Composite Type-Examples


Metal matrix composites MMC

Metal (m)+ Metal (f) = Aluminium-Tin are non miscible metals, yet can be alloyed as a composite

Metal (m) + Ceramic (f) = Electrical semi conductors, Carbide cutting tool tips, Scissors, knives

Metal (m) + Polymer (f) = Not feasible, Metals become soft at very high temperature -unsuitable for polymer filler

Sandwiched metals

Ceramic matrix composites CMC

Ceramic (m) + Ceramic (f) = Carbon-carbon composites 

Ceramic (m) + Metal (f) = Metal sprayed optic glass fiber cables

Ceramic (m) + Polymer (f) = Not feasible, Ceramics require high temperature for formation -unsuitable for polymer filler

Brake lining

●  Polymer matrix composites PMC

Polymer (m) + Polymer (f) = Polyester or rayon fibre reinforced plastics

Polymer (m) + Metal (f) = Grinding and polishing abrasives

Polymer (m) + Ceramic (f) = Fibreglass, Fibre reinforced plastic FRP Asphalt roads, imitation granite, cultured marble sinks and counter tops

Wool fibre composite


A matrix is an environment or material within which an interface is desired. A matrix surrounds the Filler material while creating a bond with it. A matrix thus creates a network within which the filler components are supported by maintaining or reinforcing their intended positions. For a matrix to be affective, it must at some stage have a lower phase than the filler material. The lower phase may occur before or while the filler material is being formed or introduced. The matrix material may turn to a higher phase by evaporation of the solvent, removal of the heat or pressure, and polymerization or action of a catalyst. Polymer matrices are most common, followed by metals and ceramics. However, paper pulp, mud, wax, etc. are some matrix materials that do not fit into any of the above-mentioned categories. Ceramic matrix composites though difficult to form, show greatest promise in material sciences.

Wood Particles in Resin Matrix

  • Portland cement, Gypsum plaster, mud (clay), and Bitumens are widely used matrix materials. Polymer matrix materials are thermosetting resins such as polymers, poly-amides, epoxies, or thermoplastic resins such as polycarbonate or polysulphones. Typically a polymer matrix composite of Epoxy and carbon fibres is of two thirds the weight of aluminium, and two and a half times as stiff.
  • For metal matrices most commonly used metals are aluminium, titanium, magnesium, and copper. Composites with metal matrices generally have metal or ceramic as filler materials. Aluminium reinforced with fibres of the ceramic silicon carbide is a classic example of a metal matrix with ceramic filler. The composite material combines the strength and stiffness of a silicon carbide with the ductility of aluminium. Metal to metal composites consist of two immiscible metals (metals that do not form alloys), such as magnesium and titanium. Such metal-metal composites with bronze matrices have been in use since Bronze Age to create many useful materials.


Next article in the series -about FILLERS in COMPOSITES



2 thoughts on “MATRIX of COMPOSITES

  1. Pingback: FILLERS and COMPOSITES | Interior Design Assist

  2. Pingback: BLOG LINKS for WOOD and WOOD FINISHING | Interior Design Assist

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s