IRON MAKING

Post 540  by Gautam Shah

.

First iron used by ancient people was a meteoric source, an iron alloy with nickel. This was used several millenniums before the actual iron age. It was a natural Iron in metallic state and so required no smelting of ores. This nearly pure iron is softer than bronze, and therefore tools formed of it had soft wearing edge.

Ahnighito fragment of the Cape York meteorite. Wikipedia Flickr image by Author Mike Cassano

Primitive age iron was smelted by mixing iron ore with charcoal, and burning in bloomeries, a type of furnaces where bellows were used to force in the air. The carbon monoxide produced by the burning charcoal, reduced the iron oxide ore to metallic iron. The apparatus, however, did not achieve a temperature of 1540° C, to completely melt the iron. The metal collected in the bottom of the furnace remained as a spongy non homogeneous mass or bloom. It had high proportion of intermingled slag. The blooms were repeatedly heated, beaten and folded to remove the slag. This produced wrought iron (=worked iron), a malleable, but fairly soft material. Iron age Irons were not castable products but required hot forming (forging). This was mainly due to inability to fully melt the material. Hot forming was a labourious process, requiring skill and experience. In comparison to bronze, iron ore was procurable everywhere and cheaper to process.

Willamette Meteorite, the sixth largest in the world, is an iron-nickel meteorite Wikipedia image by Author Dante Alighieri

Wrought iron shows high resistance to corrosion due to the trapped slag in the metal. The presence of slag in the iron helps fusion joining by hammering or forging. Wrought iron is no longer produced commercially, because low-carbon steel is less expensive and is of more uniform quality. Wrought iron, however, is still produced for certain craft-based uses such as making intricate craft objects balustrades, gates, garden accessories, etc.

The Ashoka iron pillar New Delhi, India wikipedia image by Mark A. Wilson

Simulated form of wrought iron is made by melting scrap mild steel in small furnaces, blowing air through the melt to remove carbon, and pouring the molten metal into a ladle containing molten slag, which is usually prepared by melting iron ore, mill scale, and sand together. When the molten iron carrying a large amount of gas in solution, is poured into the molten slag (kept at a lower temperature than iron), the metal solidifies almost instantly, releasing the dissolved gas. The force exerted by the gas shatters the metal into minute particles that are heavier than the slag and settle at the bottom of the ladle, agglomerating into a spongy mass.

Silla iron armor, en:Three Kingdoms of Korea, 3rd century Wikipedia image

It was Chinese (1200 BC or earlier) who designed kilns that could raise the temperature for iron making. These kilns, used upgraded coal and had high volume air supply for efficient burning. Chinese were able to melt the Iron and cast it into desired forms. Casting was less labourious, and allowed multiple items with same die form. It was accurate than forging each piece. Chinese smiths melted wrought iron and cast iron together to produce steel -a material of controlled carbon content. The process was called ‘harmonizing the hard and the soft’. This was widely used for casting cooking pots and iron statuettes. A cast iron is harder than wrought iron, but maintains the cutting edge.

Casting pig iron, Iroquois smelter, Chicago, between 1890 and 1901. Wikipedia image

Perhaps as early as 500 BC, although certainly by 200 AD, high quality steel was also produced in southern India by the crucible technique. In this system, high-purity wrought iron, charcoal, and glass were mixed in a crucible and heated until the iron melted and absorbed the carbon.

Carbon content of iron is a major factor that creates harder material. It was necessary to absorb more carbon in the iron. This required higher ratio of fuel to ore, and push in a lot more volume of air. The strength of iron begins to increase with carbon contents of 0.5 percent. To heat treat iron a carbon content of 1.2% was necessary. Wrought iron which contained less than this proportion had no qualitative effect due to heat treatments. A higher carbon content creates a brittle material but allows heat hardening. ‘Iron hardening by quenching was not practised because it made iron very brittle, unless followed by tempering, or reheating at a lower temperature, to restore toughness’. Simple fire, 600-700° C, based technique of repeated cold forging and annealing was used.

cast iron columns line the Albert Dock’s quayside Wikipedia image

In the pre-Christian portion of the period, the first important steel production was started in India, using a process called Wootz steel. It was prepared as sponge (porous) iron. This was hammered while hot to expel slag, broken into smaller pieces, and placed with wood chips in clay containers, and heated. On melting, an iron composition containing 1 to 1.6% carbon was produced. The pieces were reheated to form articles that required a hard body and sharp edge. Such steel products were exported to Middle East and other countries. It was known as Faulad (Persian). (Faulad or wootz steel has a Kannada term, ukku, a Language of Indian region of Karnataka).

Elevator screen from the Chicago Stock Exchange cast iron electroplated with copper. Wikipedia image by Joe Mabel

Nowadays commercial steel plants produce ingots or pig iron. It has very limited use. It goes to casting foundries or to steel mills. At both the places it is remelted to reduce its carbon content and for allying by adding various elements such as manganese and nickel. Often scrap steels are also added for the same purposes.

Black Country Living Museum – Jerushah the Tilted Cottage – cast iron cooker Flickr image by Elliott Brown

Melting points for various forms of Irons

Iron, Wrought     1482 – 1593

Iron, Gray Cast   1127 – 1204

Iron, Ductile       1149

Steel, Carbon      1425 – 1540

Steel, Stainless   1510

.

Advertisements

One thought on “IRON MAKING

  1. Pingback: LIST of METALS related BLOGS | Interior Design Assist

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s