Post 371 – by Gautam Shah



Floor paints constitute a distinctive category of Architectural coatings. Floor paints are broadly of three classes: Clear coatings, Pigmented or coloured paints and Technical coats. Technical coats could be under coats, super coats or singular coats. Floor paints or coatings can also be differentiated in terms of their placements: such as for top of the roof, under coating for the roof, exterior and interior surfaces of wood or masonry materials, and technical coats for floors of water storage (tanks, moats) and channels (aqueducts and canals).

5331087042_92dc21010d_zFloor paints are used to improve the appearance, increase abrasion resistance, reduce moisture penetration and impart spillage proof qualities. Floor paints, nominally do not include coatings or applications with substantial mass such as various types of plasters or depositions. Some screed applications have dual classifications of floor plaster as well as a thin coating system. Floor paints are thin surface coatings, applied on variety of substrates and with equally varied methods.

pexels-photo-122480Ancient floor coatings were applications of oil mixed with wax, bitumen and creosote. These were used for treating floor decks and seats of seagoing vessels, sea coast wood structures, wood floor boards around wells, and underside boards of roofs over purlins prior to covering with metal sheets or ceramic tiles, all to prevent the rot. Oil-wax was used, for floorings and stage floor boards, to keep intact the visual appearance of the wood. Bitumen and creosote darkened the surface and often remained tacky (due to addition of tallow or fish-oil), but wax-oil coatings, with higher content of wax were non tacky. Wax was hot-melt in bodied oil (double boiled linseed oil or polymerized oil) or oils modified with Pine-rosin. These formulations were nearly like Varnishes used for coating furniture or covering the paintings. The surface had gloss and smoothness. The Varnish coatings lasted a year or one wet season, and required re-application.

Stornoway_Airport_RunwayAncient Floor coatings were mainly applied on wood surfaces, but occasionally dull floors of stones were given a coat to achieve a shiny surface. Dull stone floors of sandstone or lime stones were coated for festive occasions like coronation, marriage and religious functions. These were temporary applications, and no one was bothered about its durability or issues of re-application.

Vera_Project_12The floor coating system saw renewed interest when large size merchant and cruise ships, railway coaches and passenger bus vehicles arrived on the scene during the Industrial age period. These utilities did not have masonry or wood floors. It was necessary to create decks of colourful ambiance, and of wear resistant, non-skidding, sound dampening and maintainable material. The first options then available were linoleum carpets and alkyd-based enamel paints. Both created floors with fewer joints, but paint was a re-applicable surface.

Akshardham temple-931709-1

1024px-Cameron_Indoor_Stadium_interiorRoad and surface signage and functional graphics became a necessity, with the increase in road and rail traffic. There was no space in many urban areas to place vertical signage. The floor signs painted on roads and pavements were warnings in the movement spaces, passengers’ zebra crossing marks, edges of surface drops, road segmentation, danger zones, curvature limits. These were initially by contrast colour paving. Similarly barefoot walk-passages in temples, mosques needed a lighter colour treatment to keep them cooler. The only option, than available was to use lime whitewash or alkyd based white oil paints.


Resort Santorini Greece Building TerracesIn post world war period plastic (or Latex, as known in USA) paints became available. The ‘latex’ paints were water-based emulsion medium. The field of marine coatings was offering many new technologies for water and UV light resistant, hard wearing systems. Rubber-based systems (chlorinated rubber coatings) became synonymous with road marking paints.


Other fields of Indoor floor paints were emerging. Stage show floors, Dance floors, TV programme production sets, TV News room floors, sports arenas, required colourful joint-less extensive surfaces. Food plants, Pharmaceutical units, Hospitals operation theatres and critical care areas, needed not only a joint-less surface, but one that was dust and scratch proof and bio-friendly material. These were first provided by Polyurethane systems and later by Epoxy systems. Electronic assembly plants, computer rooms, electronic exchanges and data server and router areas, needed static proof floor coatings. Fire-prone industrial areas needed a spark erosion flooring systems.

indexOutdoor Floor paint field also has flourished well. Sports facilities, stadiums, exercise areas, malls, food plazas need many different types of a joint-less floor of non skidding and spillage proof surfaces. The colour and texture requirements of these usages can never be found in any natural or manufactured materials. Thin coating systems of floor paints not only satisfy such unique needs but also offer pattern laying facility.

mark-1105984_640Technological innovations include use of Florescent pigments, night glow compounds, high luminescence whitening agents, texturizing additives, wrinkle finishes, two or multi-tone effects.

640px-GeneDavisStreetThe ability of a floor-painted surface to virtually do everything expected of a floor system, has forced changes on substrate technology. There was a time natural floor materials like stone or ceramic tiles were ground to smooth level and then coated. Any joint gaps or remaining surface level irregularities were filled in. But now cast on site surfaces of many materials are preferred. The material options include Ironite (cement+sand mixed with iron turnings), Magnesium Oxy-chloride Flooring, Cement Concrete floors (Tri-mix suction system), etc.



Post 357 – by Gautam Shah 


Large number of items and components are available in ready to use state with a suitable finish. These products require no extra treatment or coating, before or after the installation. The industrially finished items are class apart from finishes applied on a site, after assembly or erection.

An industrial plant offers streamline production system, in a batch or a continuous fashion. Industrial plant-based surface finish is a process integrated with production and highly articulated one. It is invariably conducted in a controlled environment and observance.


Two men on a platform painting Hull of a ship Himalaya >Wikipedia Image by Australian Maritime Museum

Site applied surface finishes, substantially consist of architectural coatings, and are multi surface applications (general purpose or GP systems). Other on site applications, but not forming part of architectural range, include Road marking paints, Marine paints, and re-application systems. On a site coatings are employed in a wide range of weathers and in open environments. Architectural coatings, for ‘drying’, rely mainly on moisture evaporation, induced polymerization, and in few instances on catalyst curing (popularly known as ‘two-pack’) systems. Architectural coatings are applied, chiefly on masonry, and than to lesser extent on wood and metal surfaces.


Prez Obama and wife help paint Habitat for Humanity site, Washington, Official white house Photo-stream Image by White House (Pete Souza) / Maison Blanche (Pete Souza) 

Industrial finishes are very specific systems, formulated for a particular substrate, object shapes, sizes, pre-treatments, method of application and drying or curing cycles and schedules. As a result, complex surface finish technologies can be used. Industrial finishes offer qualitatively a far superior finish compared to any site-based system.

Dipping treatment for Automotive industrial coating

An industrial coating, forms a very small and often a negligible part of the total cost of the product, its failure in any form destroys the entire value of a product, and manufacturing company’s reputation. Defects of industrial coatings, if any are realized after the product has reached the consumer. Remedial measures are impracticable, and it entails a recall of the product from unknown or far off locations. Industrial coatings must be continuously upgraded. Otherwise, a technologically superior product gets rejected from the market due to its aesthetic and sensorial appeal.

White-goods Consumer appliances

Industrial finishes are generally low in pigments or extenders and high to medium ‘build’. Quality of the finish is largely determined by the type of film forming mediums used. Many industrial finishes are formulated for baking-drying to achieve a hard, stable and durable finish. Amino and epoxy resin coatings dry by catalyst action. In powder coatings thermo-setting materials are heat liquefied to set. Industrial coatings also include air drying, partially air drying & low temp baking, stowing, radiation-curing, solvent-evaporating, oxygen polymerizing (oxidizing) heat polymerizing and catalyst curing, thermo plasticizing carbonating, systems. Industrial products receive pre-treatments to make their surfaces suitable for a single system of coating and through single application. The pre-surface treatment include moisture conditioning, rust inhibiting, galvanic control, texturing and levelling of the surface, etc.


Wikipedia image > Image by http://flickr.com/photos/mikebabcock/


Industrial finishes can be classified as:

  • Traditional systems  

These are based on alkyd resin technology

  • Lacquers

High molecular weight resins, such as vinyls, acrylics, chlorinated rubber, etc. that are dissolved in a solvent and do not undergo any chemical change on drying.

  • Dispersion mediums

  These are dispersions of convertible system.

  • Latex systems

Contain resins dispersed in water or other liquid that do not dissolve them. Resins are invariably high molecular weight polymers.

  • Chemically curable systems

These are made of thermo-setting resins of low molecular weight such as epoxies or urethane, that in the presence of a chemical or catalyst complete the bond formation.


Today industrial coatings are also seen in terms of environmental compliance, or the pollution hazard they can cause. The total volatile organic component, VOC. criteria is a factor that defines the worthiness of a coating system.

Water borne coatings: 

These are made from emulsion, water reducible and aqueous colloidal dispersions.

High solid coatings:

High solid coatings are frequently based on conventional polymers but with low molecular weight.

Powder coatings: 

These are based on thermoset and thermoplastic resins with pigments, fillers and additives such as hardeners and flow agents.

Advantages of Industrial coatings: Items which are difficult to coat due to their shape, size or location can be efficiently coated in an industrial set up. Items with sharp corners and edges can be coated evenly. Certain types of pre-treatments, which are not possible on a building site can be carried out at plant level. Materials and methods which are difficult to handle, or are normally hazardous on a site, can be employed at plant level. Industrial application of coating is very efficient and controlled so very thin film thickness can be achieved, and lot of wastage on account of drips and over sprays can be eliminated. Many application techniques, tools, equipment can only be used at plant level set up.

Painting booth

Industrial Coatings include White goods (consumer products of chiefly white-coloured, but not always; such as refrigerates, washing machines, ovens, gas stoves, geysers, fans, air conditioners); Consumer electronic products such as computer and server cabinets; Industrially produced furniture such as chairs, cabinets, tables, partition systems; Vehicle products such as cycles, scooters, bikes, cars, trucks, buses; Extruded or formed Long products such as steel, aluminium and composite sections, and pipes; Besides these there are several applications where clear (pigment less) or non toxic coatings are used such food containers, toys, etc.